Infinity: Exploring This Endless Enigma


A rather large quantity. And a concept we may have encountered, and possibly struggled with, in an occasional math course.

But why bother talking about it? Infinity hardly seems relevant to the practical matters of our normal day, or even our abnormal days.

Well, possibly, but infinity does pose a high intellectual intrigue. So a few minutes with infinity should provide a strong mental challenge and a diversion from the tribulations of our normal day. At least enough to warrant a few minutes consideration.

And dismissing infinity as irrelevant misses at least one relevant aspect of the concept.


Believer or not, searcher for faith or not, detester of the concept or not, God, whether as an object of faith, or an ultimate question, or an irrational delusion, God looms as unavoidable. God either serves as guidance for our life, or poses questions bedeviling our minds, or lingers as an outmoded concept born of ancient history in pre-scientific times.

And a major tenet in most theologies, and in philosophy in general, points fundamentally to an infinite God – infinite in existence, infinite in knowledge, infinite in power, infinite in perfection.

So as a passing, but intriguing, diversion, and as an attribute of a spiritual figure deeply imbedded in our culture and our psyche, infinity does provide a subject worth a few minutes of our time.

So let’s begin.

How Big is Infinity?

Strange question, right. Infinity stands as the biggest quantity possible.

But let’s drill down a bit. We should apply some rigor to examining infinity’s size.

Consider integers, the numbers one, two, three and up, and also minus one, minus two, minus three and down. We can divide integers into odd and even. Common knowledge.

But let’s consider a not-so-obvious question, a question you might have encountered. Which is larger, all integers, or just even integers? The quick answer would say the group of all integers exceeds the group of even integers. We can see two integers for every even integer.

If we have studied this question previously, however, we know that answer is wrong.

Neither infinity is larger; the infinity of all integers equals the infinity of just even integers. We can demonstrate this by a matching. Specifically, two groups rank equal in size if we can match each member of one group with a member of the other group, one-to-one, with no members left over unmatched in either group.

Let’s attempt a matching here. For simplicity, we will take just positive integers and positive even integers. To start the match, take one from the set of all positive integers and match that with two from the set of all positive even integers, take two from the set of all positive integers and match that with four from the set of even positive integers, and so on.

At first reaction, we might intuit that this matching would exhaust the even integers first, with members of the set of all integers remaining, unmatched. But that reflexive thought stems from our overwhelming experience of finite, bounded sets. In a one-to-one matching of the rice kernels in a two pound bag with those of a one pound bag, both finite sets, we well expect the one pound bag to run out of rice kernels before the two pound bag.

But infinity operates differently. An infinite set never runs out. Thus even though a one-to-one matching of all integers verses even integers runs up the even integers side quicker, the even integers never run out. Infinity presents us features counter-intuitive to our daily experience filled with finite sets.

And so with fractions. The infinite set of all fractions does not exceed the infinite set of all integers. This really throws a counter-intuitive curve, since we can not readily devise a one-to-one matching. Would not the fractions between zero and one loom so numerous that no matching can be created? But that would be wrong.

To see why, let me suggest a web search, on the following phrase, “bijection rational numbers natural numbers.” Rational numbers, i.e. ratios, are the fractions, and natural numbers are the integers. The matching proceeds with 45 degree marches down and back up a grid of the rational, i.e. fractional, numbers.

A Bigger Infinity

We might now conclude that infinity stands undefeated, and that no set, however constructed, would escape the rigor of one-to-one matching.

If you have studied this question before, you know that does not hold. The set of real numbers, i.e. numbers with digits to the right of a decimal point, exceeds the set of all integers.

Wait though. If we exercise enough cleverness, might we find a matching of real numbers with integers?

No. A proof, well examined, exists that we can not so find a match. We can thank the mathematician Georg Cantor and mathematicians following him for the rigorous development of how infinity works.

Now the proof. Take the first integer, one, and match that with the real number 0.0111111… where the digits of one extend rightward forever. That falls well within the properties of real numbers, that no limit exists to the number of digits in the decimal portion.

Take the second integer, two, and match that with real number, 0.1011111… where the digit one repeats to the right forever. Take three and match that with 0.1101111… again with the digit one repeating to the right forever. Proceed similarly with each integer. In this way, by placing a zero in the slot corresponding to the right decimal position equal to the integer being matched, we match every integer with a unique real number.

Now we can construct a real number not in the matching, via a process called diagonalization.

Start with the integer one, and pick a digit not in the first position to the right of the decimal of the matched real number. Let’s pick 2, as that differs from the zero in the first right position in the real number we just matched with one.

The first position of our (potentially) unmatched real number contains a 2 just to the right of the decimal.

Now consider the integer two, and pick a digit not in the second right position of the matched real number. Let’s pick 3. Put that digit in the second position right of decimal of the real number we look to construct. That real number now starts with.23 We continue the sequence. We march through the integers, and in the position with the zero in the matched real number, we put alternately 2 and 3 in the corresponding position of the real number that we look to be unmatched.

We proceed by this process, which marches diagonally down the positions of the matched real numbers. In this example, we create the real number 0.2323232… with 2 and 3 alternating forever. That by construction does not lie in the real numbers we matched to integers, since our constructed real number 0.23232.. contains a digit not present in any matched real number.

Of importance, this diagonalization process works regardless of any matching we attempt. We can always construct a real number by sequentially picking a digit not in each real number of the attempted match.

Why in rough terms does this work? Real numbers, in an informal sense, present a double challenge. Real numbers first extend upward in size infinitely, to larger and larger quantities, and extend downward infinitely, splitting numbers to smaller and smaller distinctions, infinitely. This double extension allows real numbers to outrun the integers, and even fractions.

A Bigger Infinity

We have not finished with the sizes of infinity.

To explore these increasing sizes, we must introduce power sets. So far in this discussion, our sets have consisted of numbers. The set of integers comprised a set of all natural or counting numbers, the set of fractions comprised a set of all numbers resulting from the division of two integers, the set of complex numbers (not discussed here, but used as an example) comprise numbers containing the square root of negative one.

Sets can contain other things, of course. We can construct the set of cities that have won professional sports championships, or the set of individuals that have climbed Mount Everest. Sets can contain sets, for example the set of the two member sets that comprise an integer number and its square. This set equates to (1,1),(2,4),(3,9),… .

Sets can be subsets of sets. The set of cities that have won championships in four or more professional sports represents a subset of the those that have won championships in any one of the sports. The set of integers that are integer cubes (say 8 or 27 or 64) represents a subset of the set of all integers.

The Power Set is the set of all subsets of a set. In other words, take the members of a set, and then construct all the various unique combinations, of any length, of those members.

For example, for the set (1,2,3) eight subsets exist. One is the empty set, the set with nothing. (Yes a set containing nothing comprises a valid set.) The other subsets list out as follows: 1,2,3,1,2,(1,3},(2,3},(1,2,3}. The power set of the set (1,2,3) contains those eight members. Note (3,2) does not count as a subset, since (3,2) simply flips the members of the (2,3) subset. Rearranging set members does not count as unique for power sets.

Power sets grow rapidly in size. The power set of the first four integers contains 16 members; of the first five integers, 32 members; the first ten, 1,024 members. If so inclined, one could list out these subsets in say Excel. Don’t try that for one hundred integers. The spreadsheet would run a billion, billion, trillion cells, or ten to the power of thirty.

We can see the next step. Take the power set of the (infinite set) of integers. If the power set of the first 100 integers looms big, the power set of all integers must loom really big. How big? How many member reside in the power set of all integers?

An infinity greater then the infinity of the integers.

Let’s demonstrate by attempting to match the set of integers with its power set.

Match the integer one with a subset having all the integers except one. Match two with a subset having all the integers except two. Do the same for three. All integers now sit matched with a different subset, and, if we think about it, those subsets are infinite in size. How? We have specified that each matching set be all the integers except just one member, and an infinite set minus one member remains infinite.

So we have matched each integer with an infinite-sized subset element within the power set. What remains unmatched? Any subset of integers a finite size. Thus our matching shows the power set of integers greater in size than just the integers.

And On and On

Without demonstration, the power set of integers equals, in size, the number of real numbers. I say without demonstration, since the proof involves a fair bit of math.

But let’s move upward. If we postulated the power set of the set of integers, we can postulate the power set of real numbers. And yes just like the power set of integers contains more members than the set of integers itself, the power set of real numbers contains more members than the set of real numbers.

We can envision this through a rough consideration of number lines, just an image we can grasp. Take a number line of real numbers. That number line extends in both directions, and the points on the line represent the real numbers.

We can mark-off our normal three-dimensional world by taking three number lines and crossing them at right angles. These three crossed lines create axes that mark off the familiar height, width and depth of our daily experience.

But now cross not just three real number lines, but an infinite number of real number lines. We can not readily visualize more than three dimensions, much less infinitely many, but mathematically an infinite dimensional space stands as valid. This crossing gives us an infinite number of infinities. While not precise, our imaging an infinite number of infinitely extending real number lines provides a view of the power set of real numbers.

We can continue. We can take ever larger power sets, infinitely. Our mind may fail grasping this, but the math remains solid. For every infinite set we can create, we can create a larger one by taking that sets power set. No limit exists to how many ever larger infinities we can create.

Back to the Finite

But now let’s go the other way. Making the infinite finite.

Consider this famous paradox. If we give a turtle a head start, we appear to never be able to catch up. For when we get to where the turtle previously resided, the turtle has moved on. And when we arrive at that new turtle position, the turtle has moved further. The turtle will always arrive at a new position ahead of us, as we move to catch up to its previous position. And this goes on infinitely. You can’t catch up.

But, go try this in real life. Maybe not with a turtle, but say a toddler. We will assume, for most cases, you run faster than the toddler (if not consider an infant in crawling stage.) You catch up. No problem. Every time. Despite the toddler or infant moving ahead as you arrive at their last position, you catch up.

How do we resolve the paradox? How in real life do we catch up, when in descriptive form we always seem, infinitely, to be behind one step.

We do so by realizing that an infinite sequence can reach a finite limit.

So while with power sets we expanded the infinite to larger and larger sets, we will now take an infinitely long sequence and chop the sequence down to the finite.

Consider the time to catch up. Assume we move twice as fast as the turtle/toddler/infant. Give the pursued a two second head start. We need one second to reach that head start spot. The turtle/toddler/infant moves ahead in this one second, a distance that we can cover in one-half second. In that half second, the turtle/toddler/infant moves ahead a distance we can cover in one-quarter second.

Our total time to catch up, if we ever do, equals the sum of those fractional seconds, which decrease by a half for each segment of the race. As an equation, this infinite sum of fractions looks as follows:

Time = 1 + 1/2 + 1/4 + 1/8 +…

That sequence extends forever. How can we total this sequence, since it extends infinitely? We deploy a bit of cleverness. Multiply this sequence by one half on both sides. Some of you may likely have seen before. Multiplying by one-half gives the following.

½ * Time = ½ * (1 + 1/2+ 1/4+ 1/8 +… or

½ * Time = 1/2+ 1/4+ 1/8 + 1/16…

Not much help, at least not yet, as we no more know the sum of the this one-half equation than the original equation. But substitute the one-half equation back into the original equation. In the original equation, the string of fractions starting at ½ and going right, equals the string of fractions in the ½ * Time equation.

Substituting, we thus obtain:

Time = 1 + ½ * Time

Now subtract ½ * Time from both sides to get

½*Time = 1

Then multiplying both sides by 2 results in

Time (i.e. sum of infinite series) = 2

The time to catch up thus equals two seconds. While mathematically catching up involves an infinite sequence of increasingly smaller fractions, the infinite sequence of those fractions sums to a finite time, i.e. two seconds.

Is this just a special case? No, the sequence of reciprocal positive integer sums represents another infinite series summing to a finite number.

First, what is the sequence of reciprocal positive integer sums? Start with the sequence of positive integer sums. As this name implies, the sequence involves sums of integers, and as a sequence it involves summing increasing numbers of integers. So the sequence starts the first positive integer, one, and sums that to 1. The sequence then takes the first two positive integers, one and two, and sums those giving 3. The sequence then takes the first three positive integers, one, two and three, and sums those giving 6. Doing the additions, the next elements, after 1,2, and 6, equal 10, 15, 21 and so on.

A reciprocal equals dividing a number into one. So we take the reciprocal of our integer sums and then our sequence looks like this:

Sequence = 1 + 1/3 + 1/6 + 1/10 + 1/15 + 1/21 +…

Unlike the previous sequence for the time to catch up, we see no way to simply multiply the sequence by a number to arrive at a match to the part of the sequence. In the time-to-catch up sequence, multiplying by 1/2 gave a part of the origin sequence. That approach is not available here.

Another approach can be used, though. Take the second element of 1/3. That equals two times (1/2 minus 1/3). We can see that by multiplying out the terms and then finding a common denominator to allow subtraction. Two times (1/2 minus 1/3) equals 1 – 2/3, or 3/3 – 2/3, which gives one third.

Now take the 1/6. That equals two times (1/3 minus 1/4) which is 2/3 – 1/2, or 4/6 – 3/6, which gives 1/6. Take the 1/10. That equals two times (1/4 minus 1/5). And so on, thus the sequence now becomes:

Sequence = 1 + 2*(1/2 – 1/3) + 2*(1/3 – 1/4) + 2*(1/4 – 1/5) +…

Which with a bit of rearrangement becomes

Sequence = 1 + 2*1/2 + 2*(- 1/3 + 1/3) + 2*(- 1/4 +1/4)

We now see that the fractions starting at 1/3 form a pair, one positive and one negative, summing to zero. All those terms starting at 1/3 and going to the right thus sum to zero, leaving the first two terms, i.e. 1 + 2*(1/2) or 2.

Again, we have taken an infinite and produced a finite.

Consider one final infinite sequence, the Basel series. This series comprises the reciprocal not of integer sums but of integer squares.

Unlike the two examples above, the Basel series does not yield to a simple solution. After conceived in the sixteenth century, the series stood unsolved for ninety years. Leonhard Euler finally found the sum, in part by using the infinite sequence for the trigonometric function sin(x). Euler might well stand as the greatest mathematician ever, and certainly of his time, and arguably as the most prolific in terms of publishing.

The curious can lookup the Basel Series for more details. The real curious can look up the rather mind-numbing proof.

God, and Infinity

The Catechism of the Catholic Church, a repository of its central teachings, exclaims the infinite nature of God, and does so multiple times. Paragraph 41 cites God’s infinite perfection, paragraph 43 God’s infinite simplicity, paragraph 270 God’s infinite mercy, paragraph 339 God’s infinite wisdom, and paragraph 1064 God’s infinite love.

The Apostles’ and Nicene creeds, accepted in many common Christian faiths, begin with a decree of God’s almighty, aka infinite, power.

A review of scholarly works in theology will find numerous discourses (attempting) to resolve the tension between God’s infinities (omnipotence, or infinite power; omniscience or infinite knowledge; and omnibenevolence, or infinite mercy) and the ubiquitous presence of evil in our world (how can an all merciful God allow wickedness?) and our clear sense of free will (how can I act freely if God knows my future?)

Clearly, God’s infinity stands as a key concept, and quandary, within religious faith.

Now let’s consider everyday images of an infinite God, images we may have developed ourselves, or heard preached. In terms of God’s infinite mercy, you and I, or say any pious, thinking individual, might conceive the mercy of an infinite God as large as the mercy of an infinite number of people. For God’s infinite creative power, we might picture that power sufficient to create an infinite number of universes, or equivalent to an infinite number of stars. In terms of knowledge, we might view an infinite God’s knowledge as large as an infinite number of computers, or an infinite number of libraries.

But… Those images actually describe a small infinity, an infinity equivalent roughly to the infinity of integers. God’s mercy as equivalent to an infinite number of individual relates his mercy to an infinite number of discrete items, people. We could match the (admittedly infinite) collection of merciful people one-to-one with integers. And God’s creative power as equivalent to the creation of an infinite numbers of universes or power of infinite stars, relates, again, God’s mercy to a set (admittedly infinite) of discrete items. We could do a one-to-one matching with integers. And so on with an infinite number of computers or libraries.

Here is the implication. God as infinite in an integer sense, as a endless, infinite sequence of nonetheless non-infinite, discrete items remains, in a subtle way, touchable, conceivable. God remains like us, or entities around us (universes, computers, stars, books), but just infinitely many more versions of discrete items of which we can see and touch and conceive. God can remain as a Father, Savior, Creator, Preacher, Benefactor, certainly infinitely perfect and infinitely numerous, but nonetheless infinitely perfect versions of tangible items we can touch, conceive, experience, ponder in our everyday lives.

In other words, God resembles items in our world, including us, just in a perfect, endless, infinitely numerous way.

But infinity as a sequence of discrete items, integers, equals the lowest size of infinity. We saw that an infinite number of larger infinities than that of integers looms over us. The infinity of integers descends to such a small infinity that no analogy describes the smallness of the infinity of integers by comparison the infinite hierarchy of infinities.

Consider just the infinity of real numbers. Real numbers of course extend upward just as do integers. But they extend downward, infinitely, to a smallness smaller than we can conceive or experience. We could take the smallest atomic particle, divide that particle a million times a second for every second of the universe, and be no closer to the smallness of the smallest member of real numbers than when we started.

Now take the power set of real numbers. We become lost, we can not readily envision infinite smallness of real numbers, and the power set of real numbers becomes a blur, more than a blur, just a miasma. But God’s infinity looms infinitely larger than the infinity of the power set of real numbers.

A catastrophe strikes, a catastrophe of comprehension and conceivability. We could contemplate a God as an infinite collection of otherwise conceivable discrete items. God looms infinite, but an infinite version of a graspable image, a Father.

Now contemplate a God greater than the infinity of the power set of real numbers. Our mind withers, recoils. We can find no images, fathom no analogies.

Under this expanded infinity, God becomes untouchable, alien, unknown, inconceivable. And our leap of faith leaves the realm of faith in a God infinite in extent and perfection, but an extension and perfection of a finite entity we can conceive, to something cold, mathematical, beyond just mysterious to eerily menacing, abstract, heartless. Our faith lies not in a warm, though infinite Father, but in an entity described best, and possibly only, in the stark, esoteric, forbidding world of the set theory of infinite quantities.

You don’t agree. You think this is not the case. God created man in his image; how can God then recede beyond our conception into a mathematical fog of infinite infinities.

But the logic becomes inescapable, despite our protests. The nature of infinity, as expanded by great mathematicians, combined with the infinity of God, as proclaimed by great theologians, creates an abstract God, distant and harsh. The infinite God becomes a mathematical God, a God described in power sets and number theory, a description which does not offer comfort.

That then identifies, starkly, the leap of faith. We leap into the unknown not to a God imagined as Fatherly and Majestic, but a God inscrutable as math more threatening than any most of us have ever taken.

But is that then where we end up?


Let’s step back. Our conception of an infinite God, within the modern understanding of infinity, becomes alien, abstract. But our discussion of infinity, and the analysis of it by modern mathematicians, included another aspect, that of the infinite converging, occasionally, but critically, to the finite.

We thus have within the expanse of the infinite, piece parts, infrequent, but still present, which converge to the finite. We thus possess a concept, an image, a view, with which to envision maybe not God in totality, but a piece of God to be our personal God. That vision parallels, mimics, the convergence of our infinite series to the finite. Within our God, we can envision, within the ineffable infinities, a personal part for each us that emerges from the convergences to the finite.

We should not overreach here. The convergence of a subset of infinite series does not allow a conclusion that infinity as a whole converges. Or that this convergence of some infinite series invalidates the infinite hierarchy of increasing infinities. No.

But rather than overreach we should admit. We should admit, recognize, that within this discussion, within this consideration of God as a touchable verses unfathomably untouchable infinity, we speak not of God. Rather we speak of images, analogies, comparison of fallible human concepts, to God.

And therein lies the likely most important message. We must acknowledge we possess, we talk in turns of, images of God. We do not know the actual God. God spans time timelessly. Mankind lives captured within time. God dwells outside space. Mankind exists bounded by space. God creates. Humans just discover what God creates. Those considerations force us to a realization the humans lack experiences that would give them knowledge of the actual God.

So while modern concepts of infinity call into question some familiar images of God, the modern concepts of infinity at a deep level aid a faith. The modern concepts of infinity, while jarring and obtuse, keep us, in that jarring, from falling into a contentment that we have reached God. The jarring shakes us from any lethargy that our human, fallible images of God mean we have finished our journey towards God.

Infinity never ends. Our travel, or maybe more aptly our wandering, towards a God never ends. The modern exposition of infinity, rather than threatening a faith, reminds us that faith involves not just belief, but a journey.

The Non-Believer

For the non-believer, the complexities of the infinite may buttress their already strong convictions on the irrationality of a belief in a Diety. For such a non-believer, science, philosophy, math, reason, those provide a sounder basis for truth.

However, the non-believer could not rest contented. They face their own quandaries with the infinite.

History provides a touch point, the ultraviolet catastrophe in the late 19th century. In classical physics, the principle of equipartition dictated that the theoretical object called a black box radiator should possess infinite energy. This pushed classic physics into a crisis. For another equally bed rock principle of physics, conservation of energy, stipulated the impossibility of an infinite energy source. Physics faced a catastrophic contradiction of an infinity.

Max Plank solved the riddle, by postulating energy did not distribute continuously, but rather in discrete steps. His quantum mechanics solved the riddle.

But quantum mechanics generated, and continues to generate, its own quandaries of the infinite. A feature of quantum mechanics, entanglement, predicts (and experiments verify) a type of infinitely fast linkage between paired particles. Two entangled particles, traveling in opposite directions, remain linked such that a measurement of one particle instantaneously dictates the state of the other particle. Infinitely fast linkage. We can write the math for the phenomena, but can not conceptualize the underlying reality. This infinity strains our common sense and equates to no available image.

Another example. Physicists struggle with the riddle of the collapse of the quantum wave function. To solve the riddle, some physicists theorize each quantum event generates a new universe, many, infinite, added universes.

Other infinities abound. Inflation theory predicts, in some versions, infinitely progressing series of Big Bangs. General relativity predicts an object of infinite density at the core of a black hole. Not to be left out, philosophy wrestles with infinite regress, and math with the implications of Geodel’s incompleteness theorem.

The non-believer can profess to not be troubled by these riddles; reason will solve them. But in stating such assurance, does not the non-believer profess a faith? To date, science, math, philosophy – the cornerstones of rationality – have produced new riddles essentially as fast as they have addressed old riddles. If God fails as a truth concept, could not rationality ultimately fail as a truth process. Can rationality escape a fate of continually creating new riddles, and encountering new infinities, never getting beyond nothing better than a pragmatic, interim description, never reaching truth?

Only on a faith can one say yes.

Infinity bedevils us, theist, atheist or agnostic.

Cognitive Behavioural Therapy – A Viewpoint

Background: Since the late 60s I’ve followed a progression of fashionable therapies and studied others back to the turn of the previous Century. I’ve seen little genuinely new. Mostly just repackaging under new authorship. Long before the term “CBT” became popularised psychologists were making full use of it but they simply talked of an “eclectic cognitive restructuring approach” or “behaviour modification techniques.” Then there’s the question of the effectiveness of one therapy compared to another. There seems to be no dearth of impressive looking research proving that each therapy is superior to each other! And note well: CBT is not really a single therapy or technique.

Katy Grazebrook & Anne Garland write: “Cognitive and behavioural psychotherapies are a range of therapies based on concepts and principles derived from psychological models of human emotion and behaviour. They include a wide range of treatment approaches for emotional disorders, along a continuum from structured individual psychotherapy to self-help material. Theoretical Perspective and Terminology Cognitive Behaviour Therapy (CBT) is one of the major orientations of psychotherapy (Roth & Fonagy, 2005) and represents a unique category of psychological intervention because it derives from cognitive and behavioural psychological models of human behaviour that include for instance, theories of normal and abnormal development, and theories of emotion and psychopathology.”

Wikipedia free dictionary: “Cognitive therapy or cognitive behavior therapy is a kind of psychotherapy used to treat depression, anxiety disorders, phobias, and other forms of mental disorder. It involves recognising unhelpful patterns of thinking and reacting, then modifying or replacing these with more realistic or helpful ones. Its practitioners hold that typically clinical depression is associated with (although not necessarily caused by) negatively biased thinking and irrational thoughts. Cognitive therapy is often used in conjunction with mood stabilizing medications to treat bipolar disorder. Its application in treating schizophrenia along with medication and family therapy is recognized by the NICE guidelines (see below) within the British NHS. According to the U.S.-based National Association of Cognitive-Behavioral Therapists: “There are several approaches to cognitive-behavioral therapy, including Rational Emotive Behavior Therapy, Rational Behavior Therapy, Rational Living Therapy, Cognitive Therapy, and Dialectic Behavior Therapy.”

The above “definitions” have the practical advantage that they don’t really definine CBT; they don’t tell us where it starts and ends. For example, there are published on the net results of comparative studies comparing CBT with a number of other therapies. One of those other therapies is “modelling” (I call it monkey-see-monkey do). But modelling would be considered by many therapists, certainly myself, to be ecompassed by CBT and not something to be compared with it. Modelling is how you learned your most vital skills, like driving a car and your most vital occupational skills. It’s how your local brain surgeons, bakers, mechanics and airline pilots learned their skills and how the bird in your backyard learned to pluck a grub from under the tree bark. Modelling is so important that it could not be ignored by a therapist on the basis that it did not fit some purist definition of “CBT”. But “modelling” is only one psychological phenomenon not encompassed by some definitions of CBT but which are too important to be ignored.

If I am right, and CBT as it is practiced is a mishmash of therapeutic approaches that have always been used in an eclectic approach to psychotherapy then one might wonder why there was any need to invent the term CBT? Well, for a start it justified a book and I suspect it helped American psychologists sell psychotherapy to their relatively new “managed health care” (insurance) system as being “evidence based therapy”. It leans heavily on the conditioned reflex idea and has a “no-nonsense-let’s-get-’em-back-to-work-at-minimal-cost” ring to it. (never mind about how they feel!)

Cognitive-Behavioural Therapy (CBT) can be seen as a repackaging and franchising of a group of therapies dating from before the 60s, with some emphasis perhaps on Albert Ellis’ (“A guide to rational living,” Harper, 61) “rational emotive therapy” (RET) which shares many of the underlying tenets of Buddhism (without the Nirvana and reincarnation), and Donald Michaelbaum’s (’70s) “self talk” therapy – (see also “What to say when you talk to yourself”, Helmstetter, 1990) in which like Ellis’ he holds that we create our own reality via the things we say to ourselves; and the various techniques of attention distraction and use of countervailing mental images as described under the name Neuro-linguistic programming, e.g. “Practical Magic”, Stephen Lankton, (META publications 1980) & other books by Bandler & Grinder.

Arguably, other related ideas of the era encompassed by CBT can include Maxwell Maltz’s “Psycho Cybernetics” (like a servo-mechanism, we automatically approach increasingly more accurate approximations of our persistent goals) and Tom Harris’ “transactional analysis” (TA) which is a simple, pragmatic and non-mystical explanation of psychodynamics. It encourages insight into self and stresses the importance of “adult” rational responses. CBT is even consistent with some “existential” approaches, e.g. of Auschwitz survivor psychiatrist Victor Frankl (“Mans’ search for meaning,” 1970 & 80 Washington Squ Press) which can involve asking oneself what one would do with ones’ life if one knew when one was going to die?

The “behaviour therapy” or “behaviour modification” aspect naturally makes use of the principles of classical and operant conditioning, i.e. associating one thing or behaviour with another – e.g. a reward, or an escape, i.e. the reinforcement. To be effective reinforcement requires motivation, a need or “drive state”. Thus a response to the first thing becomes modified, or a style of behaviour becomes “reinforced” and therefore likely to reoccur in specific circumstances. Classical conditioning applies to the reinforcement of autonomic responses, and operant conditioning to reinforcing skeletal responses.

In practice, the “behaviour” part of CBT often involves using Wolpe’s progressive desensitisation method (or a variation) which was originally based on the notion (partly false) that anxiety cannot exist in the presence of skeletal relaxation. This method involves a yoga style of progressive relaxation together with graded visualisations of the threatening situation. The client gets accustomed to visualising a low grade example of a threatening situation while staying relaxed, and when this becomes easy, moving on to a slightly more threatening visualisation. When this method is combined, in the later stages with real world exposure to graded examples of the threatening situation (preferably at first in the supportive presence of the therapist) it becomes a powerful treatment for phobias.

What is CBT used for?: Just about everything! The main things: panic, anxiety, depression, phobias, traumatic and other stress disorders, obsessional behaviour and relationship problems.

The procedure. A. In collaboration with the client, define the problem. If the problem is intermittent look for triggering or precipitating factors Try to formulate concrete behaviourally observable goals for therapy.”How would your improved confidence actually show to others?” How could your improvement be measured? How will you really know you are “better”?

Lead the client to expect a favourable outcome. This is using suggestion. Doctor’s words on medical matters, even their frowns, grimaces and “hmm hmms” have enormous suggestive power and can do both harm and good. Anxious patients are prone to misunderstand and put negative interpretations on what is said to them. Also they may hear only certain key words and fail to put them in the context of the other words which they might not “hear” or understand – i.e. they are “looking for trouble”, jumping to the wrong conclusions or to use a term coined by Albert Ellis, “catastrophising”.

B. Of course CBT requires all the normal forms of good practice in counselling technique best described elsewhere.

C. According to the exigencies presented by the client’s problem and lifestyle, make use of any one or combination of the following:

1. Simple measures like practising slow diaphramatic breathing during panic attacks, getting sufficient exercise and giving attention to good nutrition and adequate social contact. Mental (cognitive) rehearsal: (a) Ask the client to divide a desirable response into a number of steps or stages. (b) Have the client imagine actually performing each desirable step leading to the complete satisfactory response. (c) Set a homework assignment of actually experimenting and practicing in “real world” some or all of the steps drawing upon the imaginary practice for confidence.

2. Client’s journal: A diary can be divided into time slots, smaller than a day if necessary. Or the diary can focus on just the significant events. Some headings: (a)The time, (b)what happened, (c)how I actually behaved including what I said, and (d)what I felt. (e)What should have I done/will do next time? Over time the diary or journal can be a valuable learning tool and source of confidence and inspiration for mental rehearsal.

3. Modelling: This is what I call “monkey see monkey do.” In its purist form it involves learning by observing and receiving encouragement and useful feedback from someone who is expert in the desired behaviour. Practice and competence banishes anxiety. This is how all vital skills are learned, from surgery and aviation to panel beating. I once sent a timid youth out night-clubbing with another young man who was expert at approaching strangers of the opposite sex, and totally devoid of social fear. Training videos can provide a useful and convenient form of modelling. For example there was a time when South Australia’s Mental Health service’s Cerema Clinic made use of videos modelling sexual behaviour for sex therapy. Videos on various topics can be helpful to corporate persons with anxieties related to their performances (e.g. speaking up at meetings, or speaking to high status persons – “executive phobia”.). Modelling can involve joining a special interest training group, e.g. Toastmasters or the Penguins as part of the homework.

4. Relaxation techniques. These can involve the techniques commonly used with hypnotherapy. The relaxation procedure itself follows closely the format of yoga relaxation. Once a pleasant state of relaxation or trance like state is achieved systematic desentisation can be attempted and so too methods such as encouraging clients to construct or their own mental place of refuge to which they can retreat any time they choose for mental refreshment – it can be simply a room or a castle or whatever pleases the client. A variation or addition to this technique can be the invention by the client of a fictitious guru or teacher. Some religious people are already using this technique in the form of a belief in guardian angels. But literal belief is not necessary.

4. Systematic desensitisation: E.g. for a spider phobia. The patient is guided through a relaxation routine similar or identical to yoga relation and perhaps then asked to visualise a tiny little spider down the end of a long hall, so far away it is hard to see it. When the patient can visualise this without rising tension (patient can indicate tension by raising index finger) the image is made slightly more threatening. With spider phobias I make use of a children’s book with the artists’ friendly stylised pretty spiders being held up at a distance, and moving up to a documentary book with clear photography, the book eventually being held on lap by the client and browsed. Finally the client keeps and feeds a spider in a jar at home at the bedside, brings it to sessions and in my presence opens the jar and releases the spider. I always try to introduce real-world practice. I have spent nearly 2 hours riding up and down an elevator in Adelaide’s David Jones store in Rundle Mall with an elderly lady clinging to my shirt. We were getting strange looks from the store detectives! She was after about 2 hours, able to do it alone while I had coffee in a totally different store 100 metres away.

5. Self talk: Get the patients to identify what they are saying to themselves during episodes of say anxiety or depression and to document the precipitating stimuli. This where the journal or diary mentioned above can be useful. Then the patients are asked to write a better script, more uplifting or productive things to say to themselves during such times. This is where Albert Ellis’ (mentioned above) ideas can be useful. He points out we make ourselves miserable by catastrophising, and by expecting too much of the world. It is not reasonable to expect to be liked by everyone. A failed dinner party is a trivial matter not genuinely “ghastly”, “horrible”, or “terrible”! We should do what we can to make a bad situation better, but worrying beyond that is wasted emotional energy.

Does everyone agree CBT is a good thing? No. Arthur Janov of “The primal scream” fame (70s) saw these methods as a symptom of a useless, superficial “let’s get ourselves together” approach that ignored the inner realities, the neurological concomitants of neurosis. Simon Sobo, in his Psychiatric Times article (July, 2001), “On the banality of positive thinking”, sees CBT as a symptom of economic rationalism and the whole “cookie cutter” one treatment fits all approach to both psychological diagnosis and treatment. Again he argues that the patient’s realities get ignored. But one does not have to totally discard all the concepts of analytical therapies. Throwing the baby out with the bathwater would be a big mistake. For example it would be a massive mistake to dismiss the importance of symbolism just because symbolism is a feature of Freudian and Jungian psychology. We are symbol using animals. These very words are symbols. The psychology of symbolism is not alien to stimulus-response psychology because it is precisely via the processes of reinforcement that things and events acquire their symbolic value.

If you look at books on CBT you will see that it is recommended that patients keep a journal with many headings. A great many of patients suffer depression. Depression patients lack energy and are procrastinators so about 30-40% of them never get as far as even buying a little book to write in. Others don’t bother because they are quick to see that the CBT procedures or “homework” being recommended are irrelevant to their situation. For example some of my depression and panic patients are women who are trapped in a marriage with a husband they despise but at the same time are dependent on. There often seems to be a passive-aggressive lose-lose aspect to their behaviour as refusing to drive a car, or spending husband’s entire pay packet or credit card limit on the “pokies” in hotel gaming rooms, or getting arrested for shoplifting.

I’m inclined to agree with Sobo. CBT has been packaged and marketed in a way to make it agreeable to the USA’s managed health care system – and of course to health insurance systems generally. So we therapists go on doing what we’ve always done but with attention to the required nomenclatures and of course we try to bring in some positive results at the stipulated price. The bottom line is that unless our patients/clients have access to substantial health insurance benefits then all we have is a cottage beer money industry, which has been the case in Australia until November 2006.

Bagaimana Tidak Membuat Review Film-Buku Pendek

Saat saya membaca “Bagaimana Tidak Membuat Film Pendek”, saya merasa semakin tertipu, bukan oleh bukunya tetapi oleh sekolah film saya. Mengapa instruktur saya tidak mengajari saya hal ini? Ini adalah buku yang harus dibaca setiap mahasiswa film, setiap pembuat film sebelum menulis, memproduksi, atau menyutradarai film pendek. Ini adalah sumber daya yang harus dimiliki yang memandu seseorang melalui keputusan genting pembuatan film dan menunjukkan cara menghindari banyak kesalahan dalam penilaian yang menandai film biasa-biasa saja. Ditulis oleh Roberta Marie Monroe, seorang pembuat film pemenang penghargaan, dan mantan programmer film pendek Festival Film Sundance, Roberta menyajikan banyak pengetahuan tentang setiap fase, mulai dari konsepsi hingga produksi hingga distribusi.

Bagi pembuat film, festival film adalah outlet utama dan mereka telah menjadi hakim, juri, dan kadang-kadang algojo dalam menilai nilai sebuah film pendek. Dengan mengetahui apa yang tidak boleh dilakukan, Anda dapat sangat meningkatkan peluang seseorang untuk melihat dan menghargai pekerjaan Anda. Dalam hal ini, buku ini memandu Anda melewati ladang ranjau kesalahan yang dibuat oleh calon pembuat film dan profesional berpengalaman, sehingga Anda tidak perlu membuatnya sendiri. Selain itu, buku ini menampilkan wawancara dengan banyak penulis, produser, dan sutradara paling berbakat saat ini, serta cerita provokatif dari pengalaman film pendek Roberta sendiri.

Buku ini ditata dengan cara yang paling pragmatis dan mengikuti langkah-langkah yang biasa diambil dalam memproduksi film pendek. Bab pertama dari cerita naskah berbicara tentang menjaganya tetap segar dan mencantumkan banyak alur cerita yang harus dihindari, alur cerita yang telah menjadi biasa karena terlalu sering digunakan. Saat pemrogram berkata, “Pernah ke sana, lihat,” Anda kehilangan mereka dan juga audiens Anda. Bab ini menurut saya paling menarik karena memungkinkan kita masuk ke dalam pikiran programmer dan kriteria pemilihan utama, yaitu apa ceritanya dan mengapa saya harus menontonnya? Bab ini juga mencakup evaluasi skrip seperti menyewa konsultan dan pro dan kontra mendapatkan umpan balik dari teman.

Bab lain membahas panjang film dan bagaimana itu harus sesuai dengan cerita. DP Geary McLeod berkomentar, “Setiap bingkai harus berfungsi, ia harus memajukan cerita. ‘Ekonomis’ adalah hal yang perlu diingatkan oleh para pembuat film pendek.” Buku selanjutnya menunjukkan bahwa juga lebih mudah menemukan slot untuk film berdurasi 8-12 menit dibandingkan karya berdurasi 28 menit. Meredith Kadlec menambahkan, “Jangan jatuh ke dalam perangkap untuk mencoba membuktikan seberapa BANYAK yang dapat Anda lakukan, alih-alih [show] seberapa BAIK Anda bisa melakukannya.”

“How Not to…” mencakup beragam pertimbangan pembuatan film, mulai dari memilih produser, mengetahui tugas mereka, hingga penganggaran, plus cara menghemat uang dan mengumpulkan dana. Bab tentang Crewing Up paling relevan bagi pembuat film pemula. Ini berbicara tentang sinergi kru film dan bagaimana memandu upaya mereka dan menghadapi dinamika yang selalu berubah. Bab ini menjelaskan posisi kunci, orang yang perlu Anda konsultasikan sebelum Anda mengambil gambar beserta topik yang perlu ditangani. Bab ini menegaskan kembali perlunya kolaborasi yang harmonis dan fakta bahwa Anda tidak dapat melakukan semuanya sendiri.

Semua pertimbangan ini mungkin tampak menakutkan pada awalnya, tetapi jika tidak ditangani, akibatnya film Anda akan menderita. Setelah membaca buku ini, saya kewalahan dengan banyaknya tanggung jawab. Namun kemudian saya teringat mantra Roberta bahwa Anda perlu memiliki orang-orang baik di sekitar Anda dan buku ini memberikan arahan tentang cara memilih tim pendukung Anda.

Casting adalah area lain di mana penulis menyarankan untuk mencari bantuan. Dia menjalani proses menemukan dan mempekerjakan direktur casting bersama dengan alasan melakukannya. Orang akan berasumsi bahwa sutradara casting akan menghindari film pendek, tetapi banyak yang melihatnya sebagai cara untuk menyediakan pekerjaan dan eksposur untuk klien mereka, terutama yang memiliki potensi pelarian. Nasihat tentang audisi, latihan, dan menciptakan ruang aman untuk aktor Anda juga ditawarkan di bab ini. Aktor Chase Gilbertson berbicara tentang bagaimana sutradara pemula terkadang menyimpang dari jalur. “Jelas jika saya membuat film Anda, ceritanya pada awalnya cukup bagus tetapi sekarang alih-alih hanya menceritakan kisah yang bagus, Anda mencoba membuat blockbuster Hollywood. Ya, Anda punya banyak mainan keren. tapi akhirnya apa hasil akhirnya? Apa yang terjadi dengan ceritanya?”

Bab tentang produksi membahas banyak tindakan pencegahan yang berkaitan dengan pengalaman di set bersama dengan solusi kreatif untuk beberapa masalah ini. Salah satu yang terbaik adalah menggunakan Panggilan New York untuk mengakali pemilik bisnis yang tidak bersalah. Area masalah lain yang dicakup termasuk etiket dan sikap yang ditetapkan, asuransi dan izin bersama dengan layanan makanan dan kerajinan. Yang paling penting adalah nasihat Roberta untuk bersenang-senang, bersiap, dan menikmati momen magis menjadi pembuat film.

Pasca produksi adalah hubungan cinta/benci dalam pembuatan film. Semua digabungkan menjadi rekaman yang Anda sukai diikuti oleh bidikan, pencahayaan, kinerja, dan pemblokiran terburuk dalam hidup Anda. Roberta mengulangi beberapa kali, “Ini normal.” Dia juga menyarankan untuk membaca buku Walter Murch “In the Blink of an Eye” untuk mendapatkan wawasan luar biasa tentang proses penyuntingan. Pengetahuan tentang cara kerja pengeditan sangat penting untuk kesuksesan Anda di set, katanya, karena dengan begitu Anda akan tahu bidikan mana yang paling penting untuk menceritakan kisah Anda. Bab ini juga membahas bagaimana teknologi telah membuat pembuatan film menjadi kurang disiplin, misalnya merekam lebih banyak rekaman, memotong lebih cepat, dan menghasilkan lebih banyak versi sambil membuang-buang tenaga.

Roberta melihat laporan MPAA yang mengatakan bahwa hanya 2% dari semua film berdurasi panjang yang benar-benar mendapatkan rilis teater atau DVD. Dari situ bisa diduga bahwa di dunia film pendek distribusi bisa jadi lebih sulit lagi. Orly Ravid dari New American Vision menunjukkan bahwa proses distribusi dimulai sebelum Anda membuat film. Anda perlu mengetahui siapa penontonnya, memahami daya tarik film terlebih dahulu, dan memiliki ilustrasi pemasaran yang menarik atau fotografi yang menjual film tersebut. Orly juga menyarankan penganggaran dana untuk pemasaran dan penjangkauan. Bab ini membahas berbagai saluran untuk distribusi, tetapi menyatakan bahwa video pendek Anda mungkin juga memiliki nilai sebagai pilot TV atau jika diperluas menjadi sebuah fitur. Kuesioner tak ternilai dari Orly, “Apakah Distribusi Film Anda Siap?” mencakup area yang paling bermasalah dan diabaikan. Informasi kualifikasi akademi juga tercakup dalam bab ini. Roberta memudahkan pencarian distributor pendek dengan memposting daftar terkini perusahaan AS dan internasional di situs webnya.

Bab tentang Festival Film Sundance memberikan latar belakang yang mencerahkan serta strategi pengiriman yang efektif. Daftar pengajuan yang harus dan tidak boleh dilakukan oleh manajer pemrograman Sundance Adam Montgomery akan membantu memindahkan film Anda lebih jauh ke tangga pemilihan. Bagian tentang publisitas dan pemasaran memberi tahu apa yang Anda butuhkan, pada dasarnya situs web yang kuat, koleksi foto diam yang luar biasa, dan kartu nama sederhana yang mengarahkan orang ke situs Anda. Selain itu, memposting cuplikan akan sangat meningkatkan peringkat Anda di Google dan memberikan gambaran sekilas tentang karya Anda kepada pemirsa.

Sisa buku ini dikhususkan untuk contoh anggaran, klise pembuat film pendek teratas, dan panduan sumber daya yang ekstensif. Panduan ini mencakup daftar festival film ramah pendek, distributor film pendek, blog, organisasi penjangkauan masyarakat, basis data, ditambah perusahaan penyiaran dan televisi online.

“Bagaimana Tidak Membuat Film Pendek-Rahasia dari Seorang Programmer Sundance” dengan gamblang menggambarkan tugas besar yang diperlukan dalam pembuatan film. Namun itu menunjukkan bagaimana dengan menghindari banyak jebakan seseorang dapat menghemat waktu dan uang dan membuat film pendek yang tetap diingat oleh programmer dan penonton. Ditulis dengan baik dan tepat waktu, saya sangat merekomendasikan buku ini sebagai tambahan untuk perpustakaan sumber daya setiap pembuat film.

Ketika Ada Terlalu Banyak Aplikasi

Ada pepatah semakin meriah. Meski berlaku untuk teman, pasti tidak akan berlaku untuk aplikasi kuliah. Ironisnya, banyak siswa yang mengirimkan banyak aplikasi yang meningkat hingga sekitar 20 atau 30 jumlahnya. Meski mengejutkan, yang terbaik adalah menyimpan aplikasi paling banyak di 8. Tidak ada angka ajaib untuk aplikasi kuliah, tetapi 5-8 sangat disarankan. Berikut adalah alasan mengapa aplikasi kuliah harus sebanyak itu:

· Aplikasi cukup mahal. Sebagian besar aplikasi sekitar $35. Kalikan dengan 20, hasilnya sekitar $700. Itu sudah harga iPad dan iPhone.

· Aplikasi harus ditindaklanjuti. Jika seorang siswa menyimpan 20 aplikasi, itu juga berarti dia harus menindaklanjuti semuanya. Konflik dalam jadwal dan stres adalah kejadian yang pasti. Kecuali, aplikasi siswa online seperti Universitas Devry yang cukup mudah untuk diperiksa.

· Slot untuk siswa lain yang benar-benar ingin bergabung dengan sekolah tertentu akan diambil. Selain pekerjaan tambahan yang dilakukan siswa, mereka mungkin juga mengambil kesempatan untuk orang lain.

Ingatlah bahwa di perguruan tinggi kualitas lebih baik daripada kuantitas. Pada akhirnya, seorang siswa hanya dapat bergabung dengan satu perguruan tinggi. Jika siswa bingung tentang keputusan jurusan ini, yang terbaik adalah berkonsultasi dengan konselor sekolah atau penasihat perguruan tinggi untuk menjelaskannya. Beberapa perguruan tinggi memiliki penasihat perguruan tinggi yang dapat membantu mahasiswa dengan mata kuliah seperti Universitas Devry Chicago. Hal lain yang dapat dilakukan oleh seorang siswa adalah membuat daftar tentang sekolah-sekolah yang ia yakini akan lulus, yaitu sekolah yang 75% yakin lulus dan 25% yakin lulus. Bekerjalah dari meja itu dan buat keputusan yang bijak dan pragmatis dari sana.

Orang Dewasa (2)

Pembaca yang budiman,

Dalam artikel saya sebelumnya, saya menyatakan bahwa seseorang harus menghilangkan cinta ego dari hatinya dan mengisinya dengan cinta kepada Allah untuk menjadi orang beriman yang dewasa dan menambahkan bahwa itu mungkin dengan beriman kepada Allah (swt), menjauhkan diri dari larangan-Nya, dan menaati perintah-Nya. Dengan kata lain, seseorang harus menaati sunnah Rasulullah (saw) dengan tulus dan mengingat Allah dengan selalu waspada kepada-Nya.

Seseorang yang melakukannya dengan tulus menjadi “orang dewasa” dengan kebajikan yang Allah (swt) berikan kepadanya.

# Beberapa ciri orang dewasa yang mencapai dimensi kelima

Orang sempurna yang mencapai dimensi kelima melihat segala sesuatu dari sudut pandang Allah (swt). Dia menarik pelajaran dari segalanya. Dia menjaga keridhaan Allah dalam segala hal yang dia lakukan. Dia adil dalam semua penilaiannya. Dia sekarang adalah orang yang dapat diandalkan yang dipercaya semua orang. Dia tidak memiliki standar ganda. Dia tidak bertindak berbeda ketika ada sesuatu yang menguntungkan atau merugikan baginya. Dia benar-benar beriman sekarang dan kriterianya adalah kriteria Allah. Dia tidak memiliki kekhawatiran, keraguan, ketakutan atau kekhawatiran, selain dimuliakan dengan izin Allah. Oleh karena itu, ia selalu mengikuti Keadilan (kejujuran, kebenaran, dan kenyataan).

• Pria kebenaran

Dia mengikuti Allah (swt) daripada kepercayaan takhayul. Dia mencari keadilan dan kebenaran dengan meninggalkan takhayul. Dia tidak terganggu bahkan ketika kebenaran terhadap dirinya diungkapkan atau disebutkan. Dia mengatakan kebenaran bahkan untuk musuhnya. Dia sekarang adalah orang yang benar. Dia tidak memiliki rencana rumit yang ingin dia wujudkan dengan kebohongan atau plot berdasarkan rencana keuntungan yang terperinci.

“Dan janganlah menutupi yang hak dengan kebatilan, dan janganlah menutupi yang hak, padahal kamu mengetahui (apa adanya).” (Baqarah, 42)

“Tidak beriman salah seorang di antara kamu sampai kamu mencintai untuk saudaramu apa yang kamu cintai untuk dirimu sendiri.” [Bukhari & Muslim]

• Orang yang sabar dan memuji…

Sekarang, dia yakin bahwa segala sesuatu terwujud sesuai dengan takdir yang ditentukan oleh Allah (swt), pencipta segala sesuatu dalam tatanan ilahi, Yang menopang, mengelola, dan melindungi tatanan ini. Dia sekarang percaya dan menyerah sepenuhnya kepada Allah. Karena itu, dia tahu bahwa Allah menciptakan setiap masalah atau kebaikan, manfaat atau keburukan, bencana atau keselamatan. Dia bertemu mereka semua dengan sukarela. Dia tidak sedih tapi sabar ketika dia punya masalah. Dia menghargai ketika dia memiliki berkah daripada membiarkan dirinya pergi dengan menjadi bahagia.

“Berikan kabar gembira kepada mereka yang sabar!” (Baqarah, 155)

“Kesabaran untuk percaya itu seperti kepala dengan tubuh.” [Deylemî]

“Separuh dari keyakinan adalah kesabaran dan sisanya adalah syukur.” [Beyheki]

• Pria yang rendah hati…

Sifat malu juga berubah di dimensi kelima. Orang yang malu akan kehinaan di dimensi sebelumnya mulai tidak memperhatikannya lagi meskipun dia malu ketika melakukan sesuatu yang tidak sesuai dengan kehendak Allah. Oleh karena itu, orang dewasa dalam dimensi ini memiliki kerendahan hati (haya) dan kesopanan yang tinggi.

“Prostitusi adalah aib; haya adalah perhiasan seseorang.” [Berika]

“Haya benar-benar baik” [Muslim]

“Haya adalah bagian dari iman.” [Bukhari]

“Haya dan iman saling bergantung; karena itu keduanya ada bersama” [Hakim]

• Tangan yang tidak mengambil tapi memberi

Orang di dimensi kelima adalah orang yang memberi karena Allah bukan mengambil karena nafsnya.

“Tangan atas (memberi) lebih baik daripada tangan bawah (mengambil).” [Bukhari]

Dia memikirkan orang lain dan juga dirinya sendiri. Oleh karena itu, orang lain yang mencintai dunia tidak dapat memahaminya. Yang lain menganggapnya sebagai orang bodoh. Dia tidak mempertimbangkan kritik. Dia mementingkan Allah (swt). Dia memikirkan nilai atau ketidakberartian dirinya di hadapan Allah. Oleh karena itu, ia selalu melarat, berduka, lemah lembut, santun, dan penyayang kepada makhluk apa pun. Dia malu meminta sesuatu untuk dunia dari Allah (swt) dengan berpikir bahwa Allah mengetahui semua perilakunya, bahkan dia tahu bahwa Allah (swt) menerima semua doanya. Dia menganggap semua orang di bawah kekuasaannya sebagai escrow Allah. Dia merasa bertanggung jawab dari mereka.

Dia sedih ketika orang berada dalam situasi buruk dan dia bahagia ketika mereka baik.

• Badannya bersama orang-orang tapi hatinya bersama Allah…

Hatinya selalu bersama Allah setiap waktu dan kedekatan membuatnya lupa segalanya. Singkatnya, tubuhnya bersama orang-orang sementara hatinya bersama Allah sepanjang waktu.

Ia kini disucikan dari “sifat-sifat nafs” yang terkadang membuatnya lebih buruk dari binatang. Dia adalah seorang mukmin sejati yang memenuhi syarat untuk menjadi khalifah Rabb-nya di bumi dengan mematuhi nasihat dan aturan Allah (swt). Ketika Anda melihat mereka, Anda merasa seperti melihat perilaku Rasulullah (saw). Anda ingat Allah Yang adalah pencipta Anda.

# Sirat-I mustaqim (Jalan Yang Lurus)

Pembaca yang budiman,

Saya telah mencoba menjelaskan Sirat-I mustaqim (jalan Keadilan dan Kebenaran) yang Allah (swt) perintahkan dengan cara yang paling jelas dengan menggunakan berbagai pernyataan yang diawali dengan artikel pertama saya “Memahami Manusia dengan Benar”. Tidak mungkin untuk memahami dan belajar tanpa mengalami kenyataan ini. Karena Anda tidak dapat mengajarkan warna kepada orang buta, Anda tidak dapat menjelaskan dunia spiritual, peristiwa, dan kesenangan spiritualnya kepada orang buta yang berarti.

Cara menghilangkan makna kebutaan adalah sebuah operasi spiritual yang awalnya adalah “iman”. Dasar dari proses pembangunan ini adalah memasuki jalan keadilan dan kebenaran dengan tulus dan ikhlas. Mempelajari realitas spiritual hanya mungkin dengan “iman”. Manusia dapat memahami realitas sesuai dengan “iman”nya. Jika seseorang tidak memiliki iman atau tidak dapat mematangkan imannya, ia dilahirkan buta dan ia akan meninggal dalam keadaan buta. Dia pikir realitas spiritual ini tidak ada karena dia tidak bisa melihatnya.

Pembaca yang budiman, pandangan tentang “kenyataan” di dunia kasat mata disebut “syariah”. Syariah berarti dasar-dasar iman, larangan dan perintah Allah Yang merupakan realitas terbesar. Jika seseorang berpegang teguh pada syariah dengan hati dan jiwanya dengan percaya kepada Allah (swt) dengan tulus, jalan ini akan membawanya ke realitas yang merupakan inti dan makna syariah, dengan kata lain Sirat-I mustaqim (jalan yang lurus) secara otomatis selama karena dia tulus dalam pekerjaannya. Orang-orang yang tidak tulus dalam keyakinan dan pekerjaannya tidak dapat mengambil secuil pun makna laut.

# Pujian dari dimensi kelima

Pembaca yang budiman,

Dimensi kelima keberadaan kita ini adalah dimensi di mana orang tersebut berubah menjadi “manusia sejati” dari “manusia biasa”. Titik “kedewasaan” ini semata-mata merupakan rahmat dan karunia Allah dan Allah (swt) menganugerahkan rahmat ilahiah kepada sejumlah kecil orang atas kehendak-Nya.

Jika seseorang mendapat kehormatan untuk menjadi salah satu hamba yang bahagia yang diberikan rahmat dan karunia, dia harus bersyukur atas berkah spiritual, yang diberikan kepada sejumlah kecil orang.

Dia harus mensyukuri semua tahapan spiritual seperti iman, ilmu, menjadi hamba, taqwa, iman, kejujuran, kesabaran, kerelaan, kepasrahan, cinta dan ma’rifah, dan mendoakan yang menuntun kita mencapai rahmat, terutama Rasulullah ( gergaji).

Semoga Allah (swt) memberi kita kehormatan dan kebahagiaan menjadi orang dewasa! Dan berilah kami keselamatan iman pada nafas terakhir kami.

Dipercayakan kepada Allah. Kedamaian selalu bersamamu…

Tips Menang Bermain Poker Online Indonesia

Saat ini banyak orang di seluruh dunia terutama di negara Indonesia sangat menyukai permainan Poker. Bermain poker saat ini menjadi salah satu kegiatan yang digandrungi oleh orang-orang karena bisa menghabiskan waktu luang sekaligus bisa mendapatkan banyak uang jika kita bisa memenangkannya.

Tidak sulit untuk mencari permainan poker saat ini karena anda bisa mencari melalui mesin pencari seperti goog dengan menuliskan beberapa kata kunci yang anda inginkan, banyak sekali orang yang menyukai permainan poker saat ini karena dapat menghasilkan banyak uang dalam kehidupan sehari-hari yang mereka gunakan untuk menghidupi keluarga mereka tanpa harus bekerja lagi karena dengan bermain poker anda bisa mendapatkan banyak uang. Bergabunglah dengan kami sekarang dan dapatkan banyak uang

Ada beberapa orang yang menjadikan ini negara untuk menghasilkan uang dalam kehidupan sehari-hari mereka. Mereka bisa membuat game ini untuk menghasilkan pendapatan sampingan dalam hidup mereka. Hanya dengan menggunakan modal yang kecil anda bisa mendapatkan keuntungan yang banyak dalam permainan Poker Online ini.

Dalam permainan, jika anda ingin memenangkan permainan anda memerlukan beberapa tips dan juga trik jitu untuk melawan lawan yang anda hadapi agar dapat memenangkan permainan. Dan berikut beberapa tips menang dalam bermain Poker Online Indonesia, yaitu sebagai berikut:

Membaca Cara Memainkan Lawan Anda

Ini adalah salah satu tips yang sangat penting dalam permainan Poker online, anda harus bisa membaca cara bermain dari lawan yang anda hadapi. Coba lihat bagaimana lawan bermain, lihat bagaimana mereka memanggil kartu dan juga cara mereka menggertak lawan.

Bawa uang secukupnya

Tips kedua disini kami sarankan kepada anda semua untuk selalu membawa uang secukupnya saja saat bermain agar terhindar dari kekalahan yang fatal nantinya. Hal ini dilakukan agar terhindar dari banyak kekalahan saat bermain Poker Online.

Bluff lawan Anda

Ini adalah salah satu tips yang cukup ampuh dalam permainan Poker Online, namun disini kami menyarankan kepada anda semua untuk tidak sering menggunakan cara yang satu ini karena jika anda terus menggunakan cara yang satu ini, maka lawan anda akan dapat membaca taktik anda dan membuat anda mengalami kekalahan. kekalahan fatal nanti. Cobalah untuk bermain aman dalam permainan poker

Pencarian Terkait: Website Judi Poker, Agen Poker Online, Poker Online Indonesia, Agen Bola Indonesia, Situs Bola Indonesia, Situs Bola Terpercaya, Jasa SEO Ball, Agen Sbobet Terpcaya

Sejarah Kriket

Kriket adalah olahraga yang tidak diketahui asalnya yang dimainkan di stadion luar ruangan antara dua tim yang masing-masing terdiri dari sebelas pemain, menggunakan pemukul dan bola yang sedikit lebih kecil dari bola permainan bisbol. Aturan yang mengatur permainan ini telah dirancang di London, Britania Raya, oleh Marylebone Cricket Club (MCC) pada tahun 1788. Sejak saat itu, aturan tersebut telah mengalami pembaruan berikutnya.

Kriket dimainkan dalam Seri Internasional Tahunan, meskipun ada juga pertandingan antara tim perguruan tinggi dan universitas, termasuk permainan tradisional yang diadakan di Cambridge dan Oxford setiap tahun.

Diyakini bahwa Cricket adalah nama yang berasal dari kata bahasa Inggris Crick, yang berarti “tongkat” atau “pendeta tongkat”. Referensi ini dapat dikaitkan dengan kelelawar pertama yang digunakan untuk bermain di abad ke-18. Namun, pertandingan kriket pertama yang pernah tercatat, seperti yang kita ketahui permainan hari ini, diadakan di Melbourne, Australia, dalam pertandingan uji coba antara Inggris dan Australia pada tahun 1877.

Di Amerika Serikat, pertandingan kriket pertama diadakan antara negara ini dan Kanada pada tahun 1844 dan berlangsung di lapangan Klub Kriket St George di New York. Namun, baru pada tahun 1859 tim pertama pemain kriket profesional Inggris mengunjungi Amerika untuk tur luar negeri pertama sebelum memulai tur Australia pertama mereka pada tahun 1862.

Kebetulan tim kriket pertama yang melakukan tur Inggris pada tahun 1868 adalah tim Aborigin Australia dan kunjungan mereka meraih kesuksesan besar yang nantinya akan menjadi kekuatan terdepan untuk membawa Afrika Selatan sebagai negara Ujian ketiga setelah Inggris dan Australia pada tahun 1889.

Kelelawar kriket saat ini berbentuk dayung, tetapi datar dan terbuat dari kayu willow. Sebuah alat pemukul kriket berukuran panjang 96 cm dan lebar 10,8 cm, bergagang tongkat. Sesuai peraturan kriket, ukuran lapangan permainan bisa berkisar antara 133 kali 152 m atau 160 kali 168 m. Bola kriket memiliki berat antara 156 dan 163 g dan terbuat dari tali benang yang dililitkan di sekitar inti gabus dan ditutup dengan kulit.

Kriket sebenarnya dianggap sebagai olahraga nasional Inggris. Mengenai rekor kriket, peluncur Kapil Dev dari India, menjatuhkan 434 gawang dalam 24 tahun balapannya, skor kriket tertinggi yang pernah ada, meskipun Perbatasan Allan Australia membuat 11.174 lari antara tahun 1978 dan 1992.

Sebenarnya, satu-satunya tim Kriket yang dua kali memenangkan Piala Dunia Kriket adalah tim Kriket Hindia Barat yang menjadi juara pada tahun 1975 dan 1979. Meskipun kriket paling populer di Eropa, mayoritas Negara Persemakmuran memiliki tim kriket profesional.

Manfaat Memiliki Pembuka Kaleng Elektrik

Saat ini, kaleng adalah tempat penyimpanan makanan yang paling populer. Keluhan umum adalah masalah pembukaan kaleng. Kadang-kadang, pembuka kaleng hanya akan keluar dari soketnya sebelum tugas selesai atau tidak membuka kaleng sepenuhnya atau bahkan dapat menjadi sumber cedera.

Nah, masalah Anda terpecahkan dengan pembuka kaleng elektrik. Penemuan cerdik ini sebenarnya adalah alat listrik kecil yang digunakan untuk membuka kaleng.

Pembuka kaleng listrik bekerja dengan prinsip yang sama seperti manual kecuali bahwa alat melakukan semua pekerjaan. Alih-alih pegangan yang bisa Anda nyalakan, ada motor listrik yang memutarnya. Ini memiliki kabel yang Anda gunakan untuk mencolokkan daya. Hanya dengan menekan tombol, kaleng dibuka dengan mudah dan cepat. Ada tuas di bagian depan atas yang Anda tekan ke bawah; maka Anda benar-benar dapat mendengar pembuka kaleng bekerja. Untuk berhenti, angkat saja tuasnya. Tetapi pada penyelesaian pekerjaan, itu akan berhenti secara otomatis.

Kenyamanan dalam menggunakan pembuka kaleng elektrik:

1. Menjamin 100% bahwa kaleng akan dibuka dengan bersih;

2. Ini portabel dan praktis;

3. Tidak perlu repot menggunakan tekanan untuk membuat alat bekerja;

4. Tidak terlalu berantakan dan menghasilkan karya yang lebih halus;

5. Pekerjaan membuka kaleng lebih cepat selesai;

6. Sangat sedikit usaha yang digunakan;

7. Konsumsi listrik sangat sedikit; roh

8. Lebih sedikit risiko cedera dalam proses.

Perawatan yang tepat akan memastikan penggunaan alat seumur hidup. Setelah digunakan, cabut saja kabelnya dan cuci dengan air. Gunakan beberapa tetes sabun cuci piring dalam air hangat. Sikat gigi dapat membersihkan kotoran dari bilah dan roda gigi. Lap dan keringkan dengan baik. Anda bisa mengoleskan beberapa tetes pelumas sementara pada roda gigi. Lap bersih dan simpan di tempat yang kering sampai siap digunakan.

Pembuka kaleng elektrik yang digunakan di rumah berukuran kecil sedangkan ukuran yang lebih besar untuk tujuan komersial. Jenis terbaik terbuat dari stainless steel. Anda dapat memilih dari beragam merek dan fitur yang tersedia.

Dalam membeli pembuka kaleng listrik, pelajari terlebih dahulu beberapa model dan lebih baik lagi, jika Anda dapat membaca review tentangnya. Kabar baiknya adalah bahwa informasi ini tersedia secara online. Jika Anda mampu membeli alat inovatif ini, ini akan sangat membantu dalam menjadikan dapur Anda tempat yang menyenangkan dan tenang.